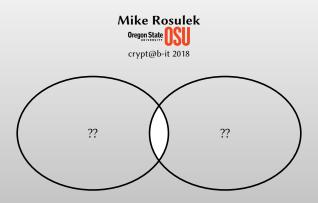
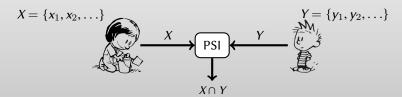
Private Set Intersection



Private set intersection (PSI)

Special case of secure 2-party computation:



Contact discovery, when signing up for WhatsApp

- ightharpoonup X = address book in my phone (phone numbers)
- ► *Y* = WhatsApp user database

Contact discovery, when signing up for WhatsApp

- \rightarrow X = address book in my phone (phone numbers)
- ► *Y* = WhatsApp user database

Private scheduling

- ightharpoonup X = available timeslots on my calendar
- ightharpoonup Y = available timeslots on your calendar

Contact discovery, when signing up for WhatsApp

- \rightarrow X = address book in my phone (phone numbers)
- ► Y = WhatsApp user database

Private scheduling

- X = available timeslots on my calendar
- ightharpoonup Y = available timeslots on your calendar

Ad conversion rate (PSI variant)

- \rightarrow X = users who saw the advertisement
- ightharpoonup Y =customers who bought the product

Contact discovery, when signing up for WhatsApp

- \rightarrow X = address book in my phone (phone numbers)
- ► Y = WhatsApp user database

Private scheduling

- ightharpoonup X = available timeslots on my calendar
- ightharpoonup Y = available timeslots on your calendar

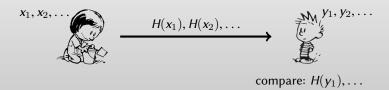
Ad conversion rate (PSI variant)

- ightharpoonup X =users who saw the advertisement
- ightharpoonup Y = customers who bought the product

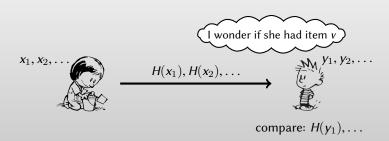
No-fly list

- X = passenger list of flight 123
- ightharpoonup Y = government no-fly list

"Obvious" protocol



"Obvious" protocol



INSECURE: Receiver can test any $v \in \{x_1, \dots, x_n\}$, **offline**

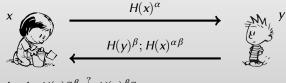
► Problematic if items have low entropy (e.g., phone numbers)

Classical protocol [Meadows86, Huberman Franklin Hogg99]

special case: each party has just one item

Classical protocol [Meadows86,HubermanFranklinHogg99]

special case: each party has just one item



check:
$$H(x)^{\alpha\beta} \stackrel{?}{=} H(y)^{\beta\alpha}$$

Idea:

- If x = y, then $H(x)^{\alpha\beta} = H(y)^{\beta\alpha}$
- If $x \neq y$, they are independently random (when H is random oracle)

Classical protocol [Meadows86,HubermanFranklinHogg99]

$$X_1, X_2, \dots$$

$$\begin{array}{c}
H(x_1)^{\alpha}, H(x_2)^{\alpha}, \dots \\
H(y_1)^{\beta}, H(x_2)^{\beta}, \dots \\
H(x_1)^{\alpha\beta}, H(x_2)^{\alpha\beta}, \dots
\end{array}$$

Idea:

- If x = y, then $H(x)^{\alpha\beta} = H(y)^{\beta\alpha}$
- If $x \neq y$, they are independently random (when H is random oracle)

Classical protocol [Meadows86,HubermanFranklinHogg99]

$$(x_1, x_2, \dots) \xrightarrow{H(x_1)^{\alpha}, H(x_2)^{\alpha}, \dots} \xrightarrow{H(y_1)^{\beta}, H(x_2)^{\beta}, \dots} \xrightarrow{(y_1, y_2, \dots)} \xrightarrow{H(x_1)^{\alpha\beta}, H(x_2)^{\alpha\beta}, \dots}$$

Idea:

- If x = y, then $H(x)^{\alpha\beta} = H(y)^{\beta\alpha}$
- If $x \neq y$, they are independently random (when H is random oracle)

Drawback: O(n) **expensive** exponentiations

Roadmap

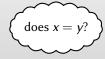
Crypto: Private equality tests:

- How to securely test whether two strings are identical
- Focus on building from OT (and similar primitives) in light of OT extension

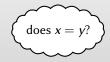
Algorithmic: Hashing techniques

How to reduce number of equality tests

Simplest case: string equality



Simplest case: string equality

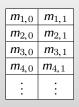


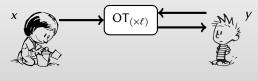
Using Yao's protocol: $(x, y \in \{0, 1\}^{\ell})$

- ▶ ℓ OTs
- ▶ Boolean circuit with $\ell 1$ AND gates
- E.g.: $\ell = 64 \Rightarrow 48 \text{ Kbits}$

$m_{1,0}$	$m_{1,1}$
$m_{2,0}$	$m_{2,1}$
$m_{3,0}$	$m_{3,1}$
$m_{4,0}$	$m_{4,1}$
:	:

▶ Sender chooses 2ℓ random strings



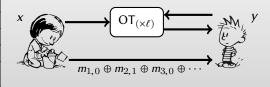


 $y = 0110 \cdots$

$m_{1,0}$?
?	$m_{2,1}$
?	$m_{3,1}$
$m_{4,0}$?
:	:

- ► Sender chooses 2ℓ random strings
- ► Receiver uses bits of *y* as OT choice bits

1,1
2, 1
3, 1
l, 1



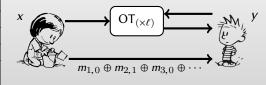
$\nu =$	n	1	1	Λ		

$m_{1,0}$?
?	$m_{2,1}$
?	$m_{3,1}$
$m_{4,0}$?
:	:

- ▶ Sender chooses 2ℓ random strings
- Receiver uses bits of y as OT choice bits
- **Summary value** of v defined as $\bigoplus_i m_{i,v_i}$
 - ► Sender can compute **any** summary value (in particular, for *x*)
 - Receiver can compute summary value only for y
 - Summary values other than y look random to receiver

 $x = 0101 \cdots$

$m_{1, 1}$
$m_{2,1}$
$m_{3,1}$
$m_{4,1}$
:



 $y = 0110 \cdots$

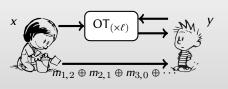
$m_{1,0}$?
?	$m_{2,1}$
?	$m_{3,1}$
$m_{4,0}$?
• • •	:

- ► Sender chooses 2ℓ random strings
- Receiver uses bits of y as OT choice bits
- **Summary value** of v defined as $\bigoplus_i m_{i, v_i}$
 - ► Sender can compute **any** summary value (in particular, for *x*)
 - Receiver can compute summary value only for y
 - Summary values other than y look random to receiver

Cost: just ℓ OTs

Improving equality tests [PinkasSchneiderZohner14]

$x = 2101 \cdots$			
$m_{1,0}$	$m_{1,1}$	$m_{1,2}$	
$m_{2,0}$	$m_{2,1}$	$m_{2,2}$	
$m_{3,0}$	$m_{3,1}$	$m_{3,2}$	
$m_{4,0}$	$m_{4,1}$	$m_{4,3}$	
:	:	:	
•	•	•	



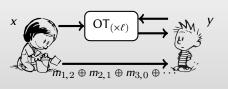
$y = 0122 \cdot \cdot \cdot$			
$m_{1,0}$?	?	
?	$m_{2,1}$?	
?	?	$m_{3,2}$	
?	?	$m_{4, 2}$	
:	:		
		•	

Idea: Instead of binary inputs, use **base**-*k* (base 3 in this example)

Now only $\log_k \ell$ instances of 1-out-of-k OT

Improving equality tests [PinkasSchneiderZohner14]

$x = 2101 \cdots$			
$m_{1,0}$	$m_{1,1}$	$m_{1,2}$	
$m_{2,0}$	$m_{2,1}$	$m_{2,2}$	
$m_{3,0}$	$m_{3,1}$	$m_{3,2}$	
$m_{4,0}$	$m_{4,1}$	$m_{4,3}$	
:	:	:	



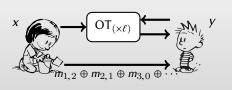
$y = 0122 \cdot \cdot \cdot$			
$m_{1,0}$?	?	
?	$m_{2,1}$?	
?	?	$m_{3,2}$	
?	?	$m_{4,2}$	
:	:	:	

Idea: Instead of binary inputs, use **base-***k* (base 3 in this example)

- Now only $\log_k \ell$ instances of 1-out-of-k OT
- ▶ Note: Only random OT required

Improving equality tests [PinkasSchneiderZohner14]

$x = 2101 \cdots$			
$m_{1,0}$	$m_{1, 1}$	$m_{1,2}$	
$m_{2,0}$	$m_{2,1}$	$m_{2,2}$	
$m_{3,0}$	$m_{3,1}$	$m_{3,2}$	
$m_{4,0}$	$m_{4,1}$	$m_{4,3}$	
:		:	
	•	•	



$y = 0122 \cdot \cdot \cdot$		
?	?	
$m_{2,1}$?	
?	$m_{3,2}$	
?	$m_{4,2}$	
:	:	
	?	

Idea: Instead of binary inputs, use **base**-k (base 3 in this example)

- Now only $\log_{k} \ell$ instances of 1-out-of-k OT
- Note: Only random OT required

Costs for different 1-out-of-k random OTs:

▶ Basic OT extension: k = 2:

128 bits/OT

• [KolesnikovKumaresan13]: $k = 2^8 \Rightarrow$

3× fewer OTs @ 256 bits/OT

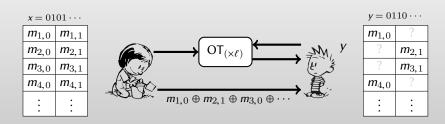
• [OrruOrsiniScholl16]: $k = 2^{76} \Rightarrow$

 $76 \times$ fewer OTs @ 512 bits/OT

► [KolesnikovKumaresanRosulekTrieu16]: $k = \infty \Rightarrow$

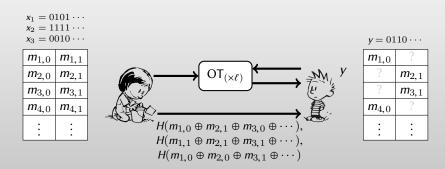
 ~ 480 bits **total**

Another generalization



Private equality test: Alice has x, Bob has y, Bob learns $x \stackrel{?}{=} y$

Another generalization



Private equality test: Alice has x, Bob has y, Bob learns $x \stackrel{?}{=} y$

Private set membership: Alice has set X, Bob has y, Bob learns $y \in X$

Roadmap

7

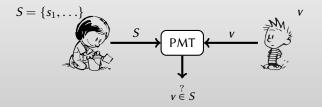
Crypto: Private equality tests:

► How to securely test whether **two strings** are identical

Algorithmic: Hashing techniques

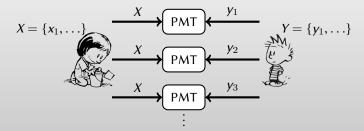
How to reduce number of equality tests

Building block

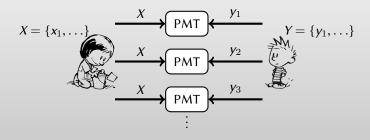


Cost: 1 OT primitive + sending *n* summary values

Dumb solution



Dumb solution



Cost: $O(n^2)$

Agree on a random hash function $h: \{0,1\}^* \rightarrow [m]$

Agree on a random hash function $h: \{0,1\}^* \rightarrow [m]$

Assign item v to bin # h(v)

Agree on a random hash function $h: \{0,1\}^* \rightarrow [m]$

Assign item v to bin # h(v)

Agree on a random hash function $h: \{0,1\}^* \rightarrow [m]$

Assign item v to bin # h(v)

x ₆	
X 3	
x_2, x_4	
<i>x</i> ₁	
X 5	

Agree on a random hash function $h: \{0,1\}^* \rightarrow [m]$

Assign item v to bin # h(v)

x ₆
X 3
x_2, x_4

 x_1 *X*5

Agree on a random hash function $h: \{0,1\}^* \rightarrow [m]$

Assign item v to bin # h(v)

Do $\Theta(n^2)$ PSI in each bin

Idea: if both parties share an item v, **both** will put it in bin h(v)

	_	
	← PSI →	
x ₆	← PSI →	y 4
	← PSI →	
	← PSI →	y_1, y_6
x ₃	← PSI →	y_3, y_5
x_2, x_4	← PSI →	
x ₁	← PSI →	
X 5	\leftarrow PSI \rightarrow	y ₂

Agree on a random hash function $h: \{0,1\}^* \rightarrow [m]$

Assign item v to bin # h(v)

Do $\Theta(n^2)$ PSI in each bin

Idea: if both parties share an item v, **both** will put it in bin h(v)

	← PSI →	
x ₆	← PSI →	y ₄
	← PSI →	
	← PSI →	y_1, y_6
X 3	← PSI →	y_3, y_5
x_2, x_4	← PSI →	
x ₁	← PSI →	
X 5	\leftarrow PSI \rightarrow	y_2

Cost: $\sum_i O(a_i b_i)$ where $a_i, b_i =$ number of items in bin #i

▶ With *n* items into *n* bins, $E[\cos t] = O(n)$!

Agree on a random hash function $h: \{0,1\}^* \rightarrow [m]$

Assign item v to bin # h(v)

 $\operatorname{Do}\Theta(\mathit{n}^2)$ PSI in each bin

Idea: if both parties share an item v, **both** will put it in bin h(v)

	_	
	← PSI →	
x ₆	← PSI →	y 4
	← PSI →	
	← PSI →	y_1, y_6
X 3	← PSI →	y_3, y_5
x_2, x_4	← PSI →	
x ₁	← PSI →	
X 5	← PSI →	y ₂
	,	

Cost: $\sum_i O(a_i b_i)$ where $a_i, b_i =$ number of items in bin #i

▶ With *n* items into *n* bins, $E[\cos t] = O(n)$!

Except, this is **completely insecure!** (why?)

"cost = $\sum_i O(a_i b_i)$ "??

ightharpoonup only if a_i , b_i public

x ₆
x ₃
x_2, x_4
x ₁
<i>X</i> 5

"cost = $\sum_i O(a_i b_i)$ "??

ightharpoonup only if a_i , b_i public

1 item

1 item

2 items 1 item

1 item

"cost = $\sum_i O(a_i b_i)$ "??

ightharpoonup only if a_i , b_i public

1 item

1 item 2 items

1 item

1 item

"cost =
$$\sum_i O(a_i b_i)$$
"??

only if a_i , b_i **public**

- 3 items
- 3 items
- 3 items 3 items
- 3 items
- 3 items
- ____
- 3 items
- 3 items

Solution:

- 1. Compute *B* such that $Pr_h[\text{no bin has} > B \text{ items}] \le 2^{-s}$ (balls in bins)
- 2. Add **dummy items** so that each bin has **exactly** *B* **items**
- ⇒ # (apparent) items per bin does not depend on input.
- (Protocol fails with probability 2^{-s})

Balls & bins questions

n balls $\stackrel{randomly \ assign}{\sim}$ *m bins*

- Expected # balls per bin is n/m
- ▶ What is the **worst case** # balls in a bin (with high probability)?

Balls & bins questions

n balls $\stackrel{randomly \ assign}{\sim} m \ bins$

- Expected # balls per bin is n/m
- ▶ What is the **worst case** # balls in a bin (with high probability)?

Natural parameter choice: *n* items, *n* bins

- Expected balls per bin = 1
- **Worst-case** balls per bin = $O(\log n)$
- ► PSI cost = (# bins) × (worst-case load)² = $O(n \log^2 n)$

Balls & bins questions

n balls $\stackrel{randomly \ assign}{\sim}$ *m bins*

- Expected # balls per bin is n/m
- ▶ What is the **worst case** # balls in a bin (with high probability)?

Natural parameter choice: *n* items, *n* bins

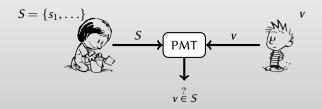
- Expected balls per bin = 1
- **Worst-case** balls per bin = $O(\log n)$
- ► PSI cost = (# bins) × (worst-case load)² = $O(n \log^2 n)$

Better parameter choice: n items, $O(n/\log n)$ bins [good to know!]

- **Expected** balls per bin = $O(\log n)$
- **Worst-case** balls per bin = $O(\log n)$
- $PSI cost = O(n \log n)$

Improved hashing

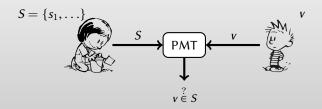
Remember:



Our basic building block naturally supports one item from Bob

Improved hashing

Remember:



Our basic building block naturally supports one item from Bob

Idea: find hashing scheme that leaves only 1 item per bin

Only Bob needs to have 1 item per bin

Use 2 random hash functions h_1, h_2



Use **2** random hash functions h_1, h_2

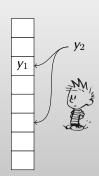
If either $h_1(y)$ or $h_2(y)$ is empty,

Use 2 random hash functions h_1, h_2

If either $h_1(y)$ or $h_2(y)$ is empty,

Use 2 random hash functions h_1, h_2

If either $h_1(y)$ or $h_2(y)$ is empty,



Use 2 random hash functions h_1, h_2

If either $h_1(y)$ or $h_2(y)$ is empty,

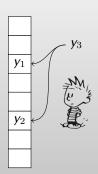
Use 2 random hash functions h_1 , h_2

If either $h_1(y)$ or $h_2(y)$ is empty,

put y in that bin

If $h_1(y)$ and $h_2(y)$ both occupied,

evict someone y' and recurse on y'



Use 2 random hash functions h_1 , h_2

If either $h_1(y)$ or $h_2(y)$ is empty,

put y in that bin

If $h_1(y)$ and $h_2(y)$ both occupied,

evict someone y' and recurse on y'

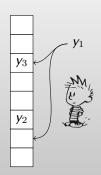
Use 2 random hash functions h_1 , h_2

If either $h_1(y)$ or $h_2(y)$ is empty,

put y in that bin

If $h_1(y)$ and $h_2(y)$ both occupied,

evict someone y' and recurse on y'



Use 2 random hash functions h_1, h_2

If either $h_1(y)$ or $h_2(y)$ is empty,

put y in that bin

If $h_1(y)$ and $h_2(y)$ both occupied,

evict someone y' and recurse on y'

y3

 y_1

Use 2 random hash functions h_1, h_2

If either $h_1(y)$ or $h_2(y)$ is empty,

put y in that bin

If $h_1(y)$ and $h_2(y)$ both occupied,

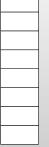
evict someone y' and recurse on y'

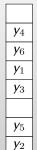
*y*₃ *y*₂ *y*₁

Claim: with sufficient bins, this process terminates with high probability

Agree on h_1, h_2

Bob hashes with Cuckoo hashing





Agree on h_1, h_2

Bob hashes with Cuckoo hashing

What about Alice?



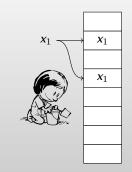


Agree on h_1, h_2

Bob hashes with Cuckoo hashing

What about Alice?

Place x in **both** $h_1(x)$ and $h_2(x)$



y 4
y 6
y ₁
y 3
y ₅
V ₂

Agree on h_1, h_2

Bob hashes with Cuckoo hashing

What about Alice?

Place x in **both** $h_1(x)$ and $h_2(x)$

x_6, x_1	
x ₆	
x_1, x_3	
x_3, x_4	
x_2, x_4	
X 5	
x_5, x_2	

y ₄
y 6
y ₁
y 3
y ₅

Agree on h_1, h_2

Bob hashes with Cuckoo hashing

What about Alice?

Place x in **both** $h_1(x)$ and $h_2(x)$

PMT in each bin

	\leftarrow PMT \rightarrow	
x_6, x_1	← PMT →	y ₄
x ₆	\leftarrow PMT \rightarrow	y 6
x_1, x_3	\leftarrow PMT \rightarrow	y ₁
x_3, x_4	\leftarrow PMT \rightarrow	y 3
x_2, x_4	\leftarrow PMT \rightarrow	
X 5	\leftarrow PMT \rightarrow	y ₅
x_5, x_2	\leftarrow PMT \rightarrow	y_2

Agree on h_1, h_2

Bob hashes with Cuckoo hashing

What about Alice?

Place x in **both** $h_1(x)$ and $h_2(x)$

y 4
y 6
y ₁
y 3
y 5
y ₂

PMT in each bin

Idea: Only Bob gets output from PMT

► He places y in $h_{?}(y)$; if Alice also has y, it will also be here

Important: Alice cannot learn whether Bob placed y in $h_1(y)$ or $h_2(y)$

Don't forget: Alice should pad with dummy items! (2*n* balls in *m* bins)

\leftarrow PMT \rightarrow	
$X_6, X_1 \leftarrow PMT \rightarrow$	y ₄
$X_6 \leftarrow PMT \rightarrow$	y 6
$X_1, X_3 \leftarrow PMT \rightarrow$	y ₁
$X_3, X_4 \leftarrow PMT \rightarrow$	y 3
$X_2, X_4 \leftarrow PMT \rightarrow$	
$X_5 \leftarrow PMT \rightarrow$	y ₅
$X_5, X_2 \leftarrow PMT \rightarrow$	y ₂

Don't forget: Alice should pad with dummy items! (2*n* balls in *m* bins)

$\perp, \perp \leftarrow PMT \rightarrow$	
$X_6, X_1 \leftarrow PMT \rightarrow$	y ₄
$x_6, \perp \leftarrow \text{PMT} \rightarrow$	y 6
$X_1, X_3 \leftarrow PMT \rightarrow$	y ₁
$X_3, X_4 \leftarrow PMT \rightarrow$	y 3
$X_2, X_4 \leftarrow PMT \rightarrow$	
$X_5, \perp \leftarrow PMT \rightarrow$	y ₅
$X_5, X_2 \leftarrow PMT \rightarrow$	y ₂

Don't forget: Alice should pad with dummy items! (2*n* balls in *m* bins)

▶ Bob too!

⊥,⊥ ←	- PMT →	⊥′
$x_6, x_1 \leftarrow$	- PMT →	y ₄
<i>x</i> ₆ , ⊥ ←	- PMT →	y 6
<i>x</i> ₁ , <i>x</i> ₃ ←	- PMT →	y ₁
<i>x</i> ₃ , <i>x</i> ₄ ←	- PMT →	y 3
$x_2, x_4 \leftarrow$	- PMT →	⊥′
$x_5, \bot \leftarrow$	- PMT →	y ₅
<i>x</i> ₅ , <i>x</i> ₂ ←	- PMT →	y_2

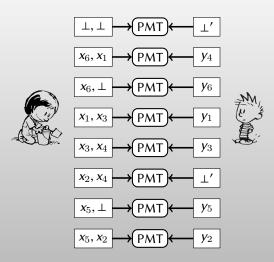
Don't forget: Alice should pad with dummy items! (2*n* balls in *m* bins)

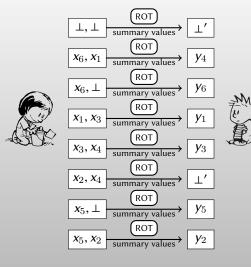
▶ Bob too!

Cost:

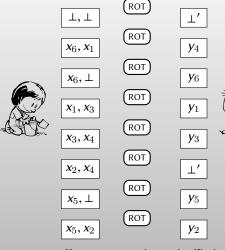
- $\sim 1.5n$ bins for Cuckoo
- At most O(log n) items per bin for Alice
- \Rightarrow Still $O(n \log n) \cos t!$

\perp, \perp	\leftarrow PMT \rightarrow	⊥′
x_6, x_1	\leftarrow PMT \rightarrow	y 4
x_6, \perp	\leftarrow PMT \rightarrow	y 6
x_1, x_3	\leftarrow PMT \rightarrow	y ₁
x_3, x_4	\leftarrow PMT \rightarrow	y 3
x_2, x_4	\leftarrow PMT \rightarrow	⊥′
x_5, \perp	\leftarrow PMT \rightarrow	y ₅
x_5, x_2	\leftarrow PMT \rightarrow	y_2





Summary values can be sent all together



all summary values, shuffled

Summary values can be sent all together

No longer associated with bins

Previously:

Can't leak # true items in a bin

Now:

- Everyone knows: n true items $\Rightarrow 2n$ true summary masks
- ⇒ Send only summary masks of true items

 \perp'

 x_6, x_1

 x_1, x_3

 \bot , \bot

(ROT y_4

 x_6, \perp

ROT

(ROT

 y_1

y3

y6

 x_3, x_4 x_2, x_4

ROT

 \perp'

 x_5, \perp

 x_5, x_2

ROT

ROT

 y_2

y5

Cuckoo PSI costs

Other details:

Actually use Cuckoo hashing with 3 hash functions

Costs:

- $\sim 1.5n$ Cuckoo bins
- $\sim 1.5n$ OT primitives
- ▶ 2*n* summary masks
- \Rightarrow total cost O(n)

Performance: [KolesnikovKumaresanRosulekTrieu16] = most efficient 1-out-of-∞ OT equality test

- PSI of 1 million items
- ⇒ **3.8 seconds** @ 120 MB
- Insecure protocol (hash and send) \Rightarrow 0.7 seconds @ 10 MB