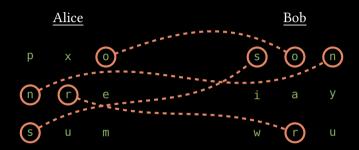
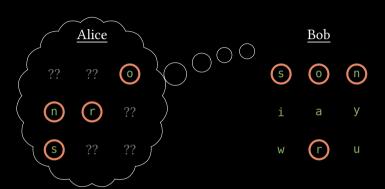
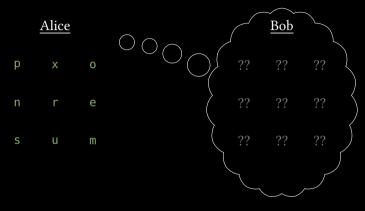
Compact and Malicious Private Set Intersection for Small Sets

Mike Rosulek, Oregon State University Ni Trieu, Arizona State University

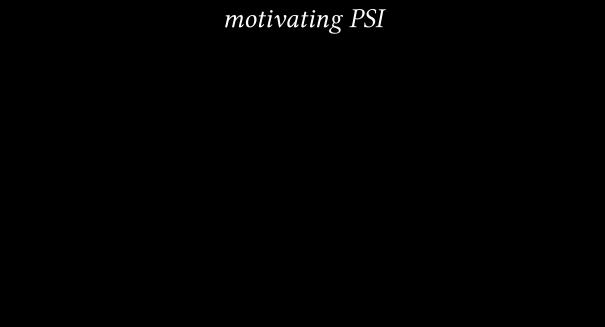
<u>A</u>	lice		<u>Bob</u>			
p	Х	o	S	0	n	
n	r	е	i	а	У	
S	u	m	W	r	u	



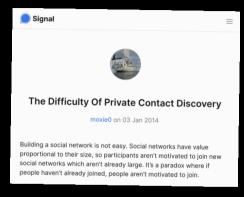




(one-sided output)

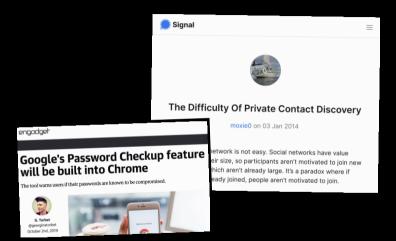


motivating PSI



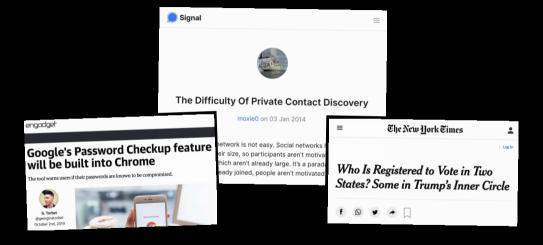
 $\{\text{my phone contacts}\} \cap \{\text{users of your service}\}$

motivating PSI



 $\{my\ passwords\} \cap \{passwords\ found\ in\ breaches\}$

motivating PSI



 $\{\text{voters registered in OR}\} \cap \{\text{voters registered in NY}\}$

PrivateDrop: Practical Privacy-Preserving Authentication for Apple AirDrop

Alexander Heinrich Matthias Hollick Thomas Schneider Milan Stute Christian Weinert

Technical University of Darmstadt, Germany

@ USENIX Security 2021

PrivateDrop: Practical Privacy-Preserving Authentication for Apple AirDrop

Abstract

Apple's offline file-sharing service AirDrop is integrated into more than 1.5 billion end-user devices worldwide. We discovered two design flaws in the underlying protocol that allow attackers to learn the phone numbers and email addresses of both sender and receiver devices. As a remediation, we study the applicability of private set intersection (PSI) to mutual authentication, which is similar to contact discovery in mobile messengers. We propose a novel optimized PSI-based protocol called PrivateDrop that addresses the specific challenges of offline resource-constrained operation and integrates seamlessly into the current AirDrop protocol stack. Using our native PrivateDrop implementation for iOS and macOS we experimentally demonstrate

ck Thomas Schneider ian Weinert

nstadt, Germany

@ USENIX Security 2021

PrivateDrop: Practical Privacy-Preserving Authentication for Apple AirDrop

Abstract

Apple's offline file-sharing service AirDrop is integrated into more than 1.5 billion end-user devices worldwide. We discovered two design flaws in the underlying protocol that allow attackers to learn the phone numbers and email addresses of both sender and receiver devices. As a remediation, we study the applicability of private set intersection (PSI) to mutual authentication, which is similar to contact

discovery in mobile messengers. We propose a no mized PSI-based protocol called PrivateDrop that a the specific challenges of offline resource-constrain eration and integrates seamlessly into the current A tion for iOS and macOS we experimentally demo

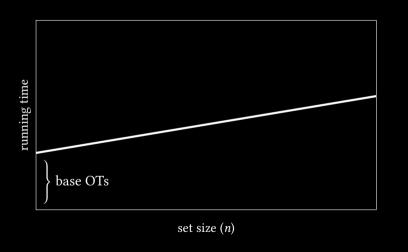
Thomas Schneider ian Weinert

nstadt, Germany

@ USENIX Security 2021

Set Sizes. Our complexity analysis in § 4.6 shows that the online PSI overhead depends on the number of identifiers m and address book entries n. A previous online study found that Apple users have n = 136 contacts on average [92]. protocol stack. Using our native PrivateDrop imple Therefore, we select values for n in this order of magnitude but also include values up to n = 15000 to assess potential

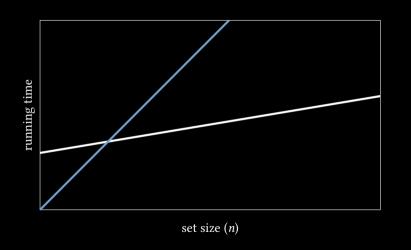
PSI techniques for small sets



OT-based PSI:

- ▶ 128 base OTs
- ightharpoonup O(n) symm-key ops

PSI techniques for small sets



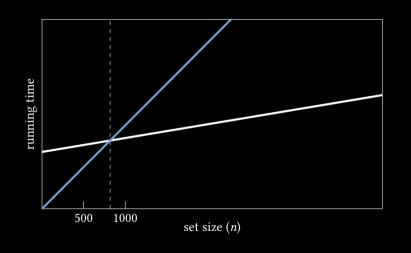
OT-based PSI:

- ▶ 128 base OTs
- \triangleright O(n) symm-key ops

KA-based PSI:

ightharpoonup O(n) pub-key ops

PSI techniques for small sets

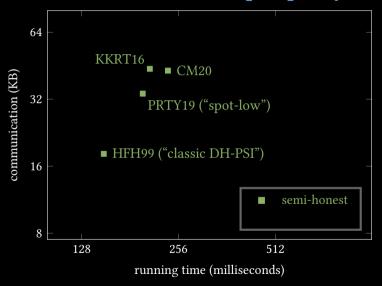


OT-based PSI:

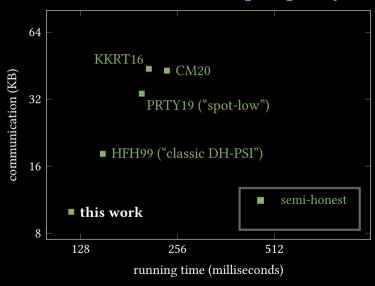
- ▶ 128 base OTs
- \triangleright O(n) symm-key ops

KA-based PSI:

ightharpoonup O(n) pub-key ops

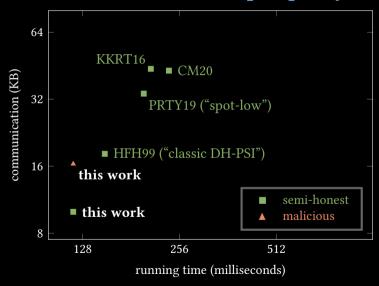


our semi-honest PSI:



our semi-honest PSI:

- ► 45% \ communication
- ≥ 20% ↓ runtime



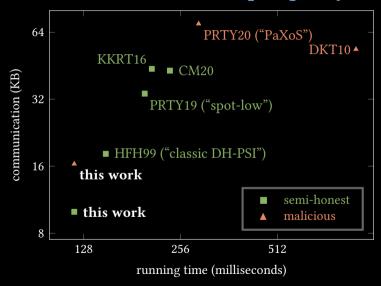
our semi-honest PSI:

- ► 45% \ communication
- ▶ 20% ↓ runtime

our malicious PSI:

- ► 10% ↓ communication
- ► 20% ↓ runtime

vs. best semi-honest PSI!



our semi-honest PSI:

- ► 45% \ communication
- ► 20% \ runtime

our malicious PSI:

- ▶ 10% ↓ communication
- ► 20% ↓ runtime

vs. best semi-honest PSI!

- 75% ↓ communication
- ► 55% ↓ runtime

vs. best malicious PSI

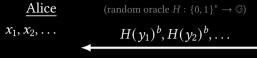
- \checkmark 1 what is PSI?
- ✓ 2 summary of our results
- - 3 review "classic DH-PSI"
 - 4 our new protocol ideas
- 5 some fine print

<u>Alice</u>	(random oracle $H:\{0,1\}^* \to \mathbb{G}$)	$\underline{\mathrm{Bob}}$
x_1, x_2, \dots		y_1, y_2, \ldots

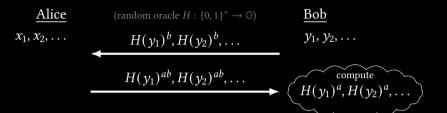
$$\begin{array}{ll} \underline{\text{Alice}} & \text{(random oracle } H \colon \{0,1\}^* \to \\ x_1, x_2, \dots & H(y_1)^b, H(y_2)^b, \dots \end{array}$$

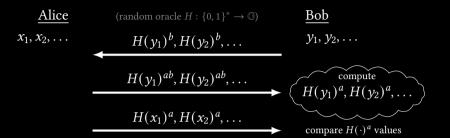
 $\underline{\text{Bob}}$

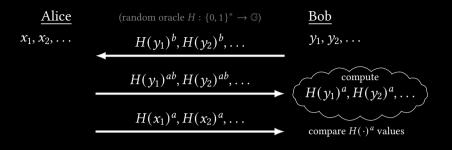
 y_1, y_2, \ldots



$$\frac{\text{Bob}}{y_1, y_2, \dots}$$

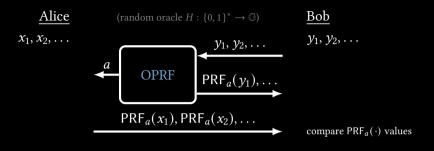






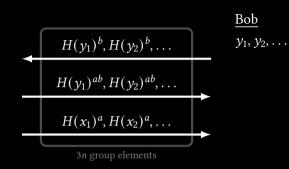
Semi-honest security:

- ▶ $x \mapsto H(x)^a$ is a PRF (DDH assumption + random oracle)
- first two messages are an oblivious PRF protocol



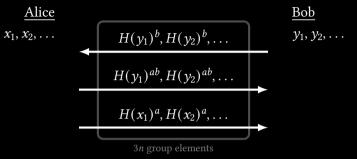
Semi-honest security:

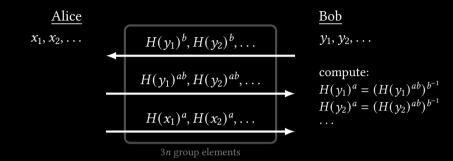
- ▶ $x \mapsto H(x)^a$ is a PRF (DDH assumption + random oracle)
- first two messages are an oblivious PRF protocol
- standard OPRF→PSI paradigm [FreedmanlshaiPinkasReingold05]

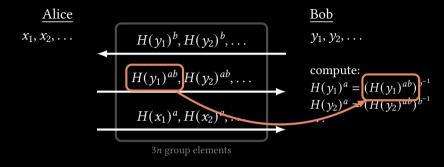


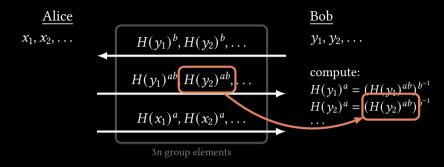
Alice

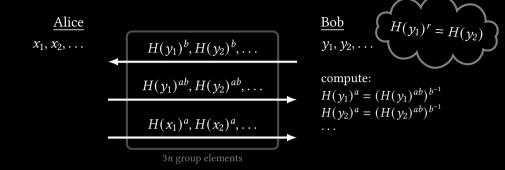
 x_1, x_2, \ldots





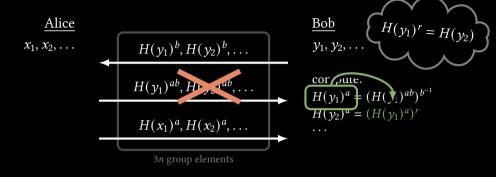






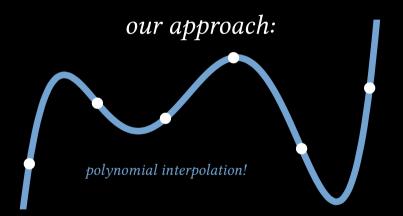
replace random oracle with some "trapdoored" function

. . where Bob knows dlog relationships between output



replace random oracle with some "trapdoored" function

 \dots where Bob knows dlog relationships between outputs



<u>Alice</u>

 x_1, x_2, \ldots

<u>Bob</u>

 y_1, y_2, \ldots

Alice

 x_1, x_2, \ldots

$\underline{\text{Bob}}$

 y_1, y_2, \ldots

interpolate poly P: $P(y_i) = g^{b_i}$

Alice

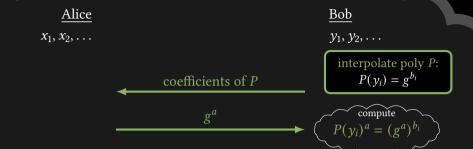
 x_1, x_2, \ldots

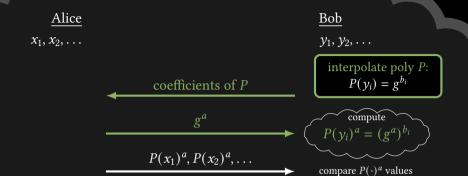
coefficients of P

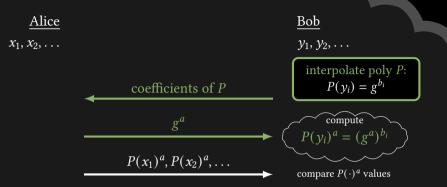
Bob

 y_1, y_2, \ldots

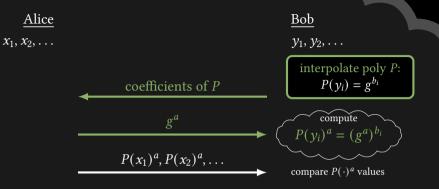
interpolate poly P: $P(y_i) = g^{b_i}$



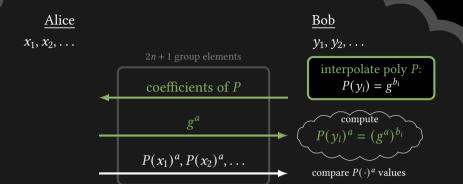




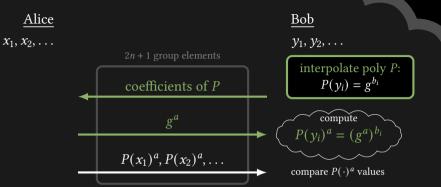
correctness: Bob knows dlog of P(y) for programmed points $\sqrt{}$



correctness: Bob knows dlog of P(y) for programmed points \checkmark obliviousness: description of P doesn't leak choice of programmed points \checkmark



correctness: Bob knows dlog of P(y) for programmed points \checkmark description of P doesn't leak choice of programmed points \checkmark efficiency: |description of P| = n group elements \checkmark



correctness: Bob knows dlog of P(y) for programmed points \checkmark obliviousness: description of P doesn't leak choice of programmed points \checkmark efficiency: |description of P| = n group elements \checkmark

 $P(\cdot)^a$ is PRF: Bob **cannot know** dlog of any *other* P(x) ??

interpolate so that:

$$P(y_i) = g^{b_i}$$

?? \downarrow ??
other $P(x)$ outputs
have unknown dlog

interpolate so that: $P(y_i) = g^{b_i}$?? | ?? other P(x) outputs have unknown dlog

Ideal permutation model: all parties have oracle access to random Π, Π^{-1}

interpolate so that:
$$P(y_i) = g^{b_i}$$

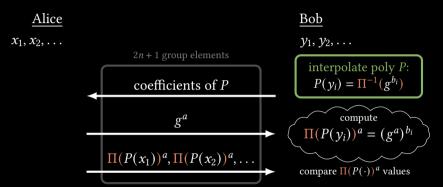
other P(x) outputs have unknown dlog

interpolate so that: $P(v_i) = \Pi^{-1}(g^{b_i})$

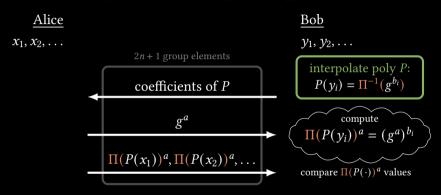
simulator can **program** other $\Pi(P(x))$ outputs

Ideal permutation model: all parties have oracle access to random Π, Π^{-1}

our real protocol:

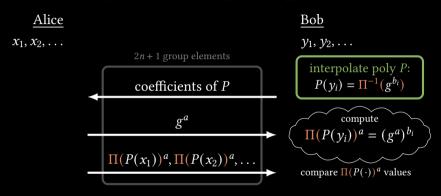


our real protocol (fine print):



semi-honest: Alice's group elements can be truncated

our real protocol (fine print):



semi-honest: Alice's group elements can be truncated

malicious: a few more strategic RO calls (to help simulator extract)

more fine print...

$$\xrightarrow{g^a} P(y_i) = g^{b_i}$$

$$P \longrightarrow P \qquad P(y_i) = g^{b_i} ?$$
finite field ? cyclic group

$$P \longrightarrow P \qquad P(y_i) = KA \text{ response}$$

▶ use generic key agreement in place of g^a , g^b

- use generic key agreement in place of g^a , g^b
- KA protocol messages must be pseudorandom bit strings
- ► e.g., elliptic curve Diffie-Hellman with elligator encoding scheme
 [BernsteinHamburgKrasnovaLange13]

[ChoDachmanSoledJarecki16] PSI:	our protocol:

[ChoDachmanSoledJarecki16] PSI:

our protocol:

interpolate polynomial *P* so that:

$$P(y) = \begin{vmatrix} \text{next message in private} \\ \text{equality test protocol} \end{vmatrix}$$

interpolate polynomial *P* so that:

$$P(y) = \begin{bmatrix} \text{next message in key} \\ \text{agreement protocol} \end{bmatrix}$$

$$[ChoDachman Soled Jarecki 16]\ PSI:$$

our protocol:

interpolate polynomial *P* so that:

$$P(y) = \begin{bmatrix} \text{next message in private} \\ \text{equality test protocol} \end{bmatrix}$$

interpolate polynomial *P* so that:

$$P(y) = \begin{vmatrix} \text{next message in key} \\ \text{agreement protocol} \end{vmatrix}$$

one KA message n KAdeg-*n* polynomial

responses

$[ChoDachman Soled Jarecki 16]\ PSI:$

our protocol:

interpolate polynomial *P* so that:

$$P(y) = \begin{bmatrix} \text{next message in private} \\ \text{equality test protocol} \end{bmatrix}$$

interpolate polynomial ${\cal P}$ so that:

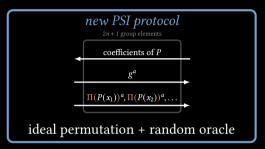
$$P(y) = \begin{bmatrix} \text{next message in key} \\ \text{agreement protocol} \end{bmatrix}$$

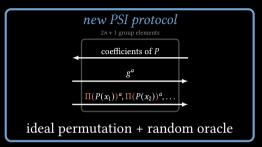
$$\frac{\deg - n \text{ polynomial}}{\deg - n \text{ polynomial}}$$

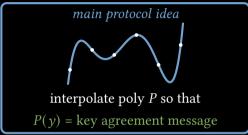
 $\begin{array}{c|c} \text{one KA message} & n \text{ KA} \\ \hline \text{deg-} n \text{ polynomial} & \text{responses} \end{array}$

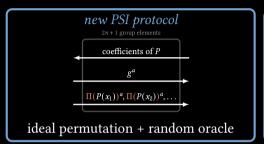
ideal cipher model

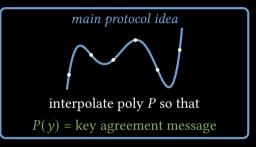
ideal permutation model





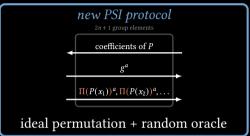


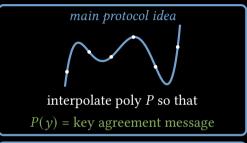






full version @ ia.cr/2021/1159







full version @ ia.cr/2021/1159