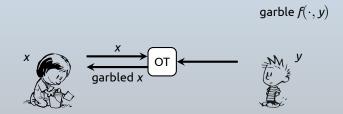
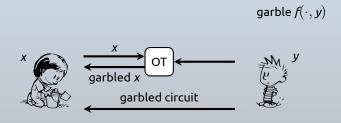
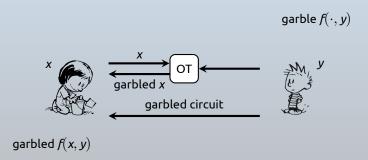
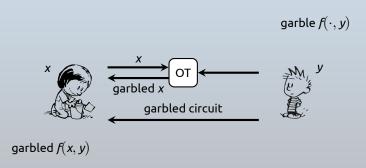
richer efficiency/security tradeoffs in 2PC

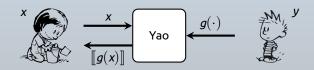
Vladimir Kolesnikov @ Alcatel·Lucent Payman Mohassel @ YAHOO!

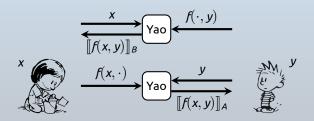

Ben Riva @ Bar-llan University


Mike Rosulek @ Oregon State

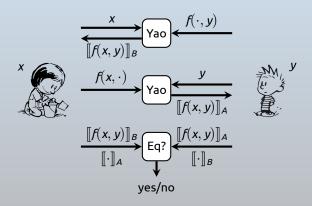



 $\mathsf{garble}\, \mathit{f}(\cdot,\mathit{y})$

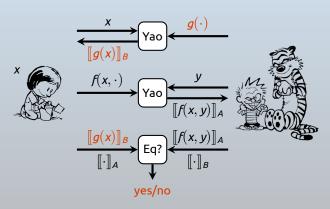




- Secure against semi-honest sender & malicious receiver
- Malicious sender can construct bad garbled circuit



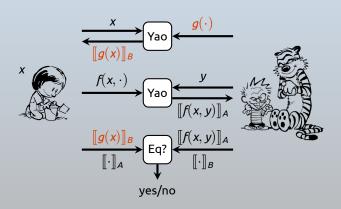
- Secure against semi-honest sender & malicious receiver
- Malicious sender can construct bad garbled circuit


dual execution protocol [MohasselFranklin06]

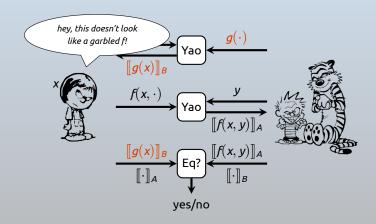
dual execution protocol [MohasselFranklin06]

dual execution protocol [MohasselFranklin06]

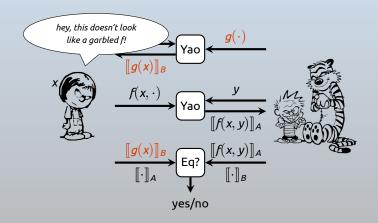
- lacktriangle Malicious Bob learns whether $g(x)\stackrel{?}{=} f\!(x,y)$ for arbitrary g
- ► That's all he learns (i.e., only 1 bit) [MohasselFranklin06]
- Correctness never violated: Alice never accepts a wrong output.


what's your paper about?

Improvements to the dual-execution mechanism:


- 1. Restrict nature of the leaked bit
- 2. Reduce probability of a bit leaking

restrict nature of leaked bit


natural way to restrict leakage

natural way to restrict leakage

natural way to restrict leakage

 "Sanity checking" garbled circuit (# gates, topology, etc) should restrict leakage [HuangKatzEvans12]

Folklore: In a standard garbling scheme, you can at least infer the *topology* of a malicious garbled circuit.

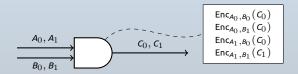
Folklore: In a standard garbling scheme, you can at least infer the *topology* of a malicious garbled circuit.

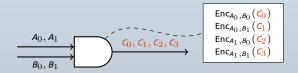
Definition

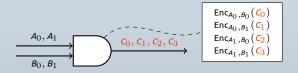
Garbling scheme is topology-enforcing if

- ∃ extractor *Ext*
- \forall (possibly malicious) garbled circuits F, garbled encoding info e
 - : $Ext(F, e) \rightarrow plain circuit f$:
 - f "explains" output behavior of F
 - (apparent) topology of F = topology of f

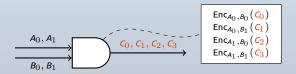
(can also define "property-enforcing" for arbitrary properties)


Folklore: In a standard garbling scheme, you can at least infer the *topology* of a malicious garbled circuit. Yes and no!


Definition


Garbling scheme is topology-enforcing if

- ∃ extractor *Ext*
- \forall (possibly malicious) garbled circuits F, garbled encoding info e
 - : $Ext(F, e) \rightarrow plain circuit f$:
 - f "explains" output behavior of F
 - (apparent) topology of F = topology of f


(can also define "property-enforcing" for arbitrary properties)

- Standard schemes enforce topology but not information bandwidth
- Garbled circuit with one output wire can leak entire input.
- Achieve topology-enforcing (in ROM) by adding 2 hashes to each wire

- Standard schemes enforce topology but not information bandwidth
- Garbled circuit with one output wire can leak entire input.
- Achieve topology-enforcing (in ROM) by adding 2 hashes to each wire

Theorem

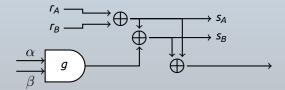
Dual-execution protocol with topo-enforcing garbling scheme leaks:

$$g(x) \stackrel{?}{=} f(x, y)$$

for adversarially chosen g with same topology as $f(\cdot, y)$

Dual execution checks that malicious circuit agrees with honest circuit...

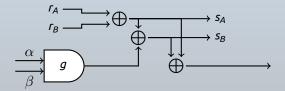
▶ in the output wires only!


Dual execution checks that malicious circuit agrees with honest circuit...

in the output wires only!

for every wire in circuit: $\xrightarrow{\alpha} g \longrightarrow g$

Dual execution checks that malicious circuit agrees with honest circuit...


in the output wires only!

- \triangleright Secret-share each wire value, output shares s_A , s_B , recombine shares
- ▶ Dual execution mechanism compares shares s_A , s_B against a *correct* circuit!

Dual execution checks that malicious circuit agrees with honest circuit...

in the output wires only!

- ▶ Secret-share each wire value, output shares s_A , s_B , recombine shares
- ▶ Dual execution mechanism compares shares s_A , s_B against a *correct* circuit!
- Now malicious circuit must agree with honest circuit on all internal wires

only computation leaks [MicaliReyzin04]

"Cannot leak **jointly** on a and b unless they are computed on **simultaneously** at some step."

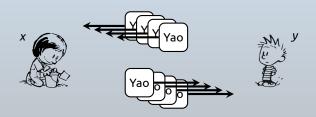
only computation leaks [MicaliReyzin04]

"Cannot leak **jointly** on a and b unless they are computed on **simultaneously** at some step."

Definition

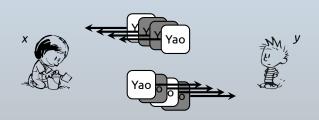
OCL predicate in a circuit depends only on the *inputs to one single gate*.

only computation leaks [MicaliReyzin04]

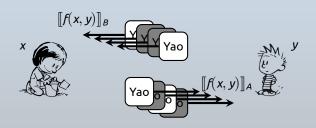

"Cannot leak **jointly** on a and b unless they are computed on **simultaneously** at some step."

Definition

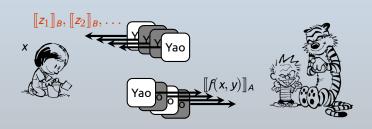
OCL predicate in a circuit depends only on the *inputs to one single gate*.


Theorem

- ightharpoonup Transform circuit C to C^* using wire-secret-sharing construction
- ightharpoonup Run dual-execution of C^* with topology-enforcing garbling scheme
- \Rightarrow Adversary learns only a **conjunction of OCL predicates** in *C*


Main idea:

▶ Run s copies of Yao's protocol in each direction


Main idea:

- Run s copies of Yao's protocol in each direction
- Cut and choose: check each garbled circuit with probability 1/2.

Main idea:

- Run s copies of Yao's protocol in each direction
- Cut and choose: check each garbled circuit with probability 1/2.
- Garbled circuits in same direction have same output encoding

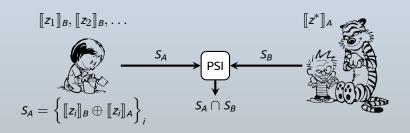
Main idea:

- Run s copies of Yao's protocol in each direction
- Cut and choose: check each garbled circuit with probability 1/2.
- Garbled circuits in same direction have same output encoding
- What to do when Alice gets disagreeing outputs?

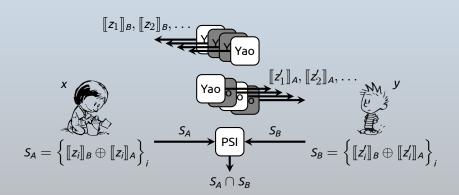
reconciliation technique

lacktriangle Two honest parties can compute common value $[\![z^*]\!]_B \oplus [\![z^*]\!]_A$

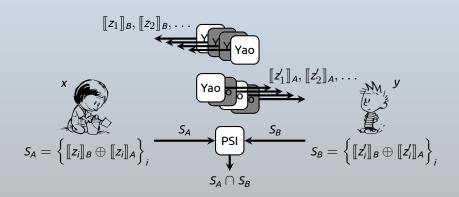
reconciliation technique


$$\llbracket z_1 \rrbracket_B, \llbracket z_2 \rrbracket_B, \dots$$

$$S_A = \left\{ \llbracket z_i \rrbracket_B \oplus \llbracket z_i \rrbracket_A \right\}_i$$


- lacktriangle Two honest parties can compute common value $[\![z^*]\!]_B \oplus [\![z^*]\!]_A$
- If disagreeing output, compute set of candidates

reconciliation technique



- lacktriangle Two honest parties can compute common value $[\![z^*]\!]_B \oplus [\![z^*]\!]_A$
- If disagreeing output, compute set of candidates
- Perform private set intersection on the sets!
 - Bob learns nothing from PSI unless all circuits evaluated by Alice are bad.

protocol summary

protocol summary

Output of PSI leaks extra information only if:

- All checked circuits are good, all evaluated circuits are bad
- \Rightarrow leakage with probability 2^{-s}

Adversary cannot violate correctness, only privacy

- ightharpoonup Privacy violated only by one bit, and only with probability 2^{-s}
- ightharpoonup ϵ -CovIDA security notion of [MohasselRiva14]
- Compelling generalization of covert security [AumannLindell10]; useful for smaller s

Adversary cannot violate **correctness**, only privacy

- ightharpoonup Privacy violated only by one bit, and only with probability 2^{-s}
- $ightharpoonup \epsilon$ -CovIDA security notion of [MohasselRiva14]
- Compelling generalization of covert security [AumannLindell10]; useful for smaller s

Alice & Bob can choose different "s" parameters!

Adversary cannot violate **correctness**, only privacy

- ightharpoonup Privacy violated only by one bit, and only with probability 2^{-s}
- $ightharpoonup \epsilon$ -CovIDA security notion of [MohasselRiva14]
- Compelling generalization of covert security [AumannLindell10]; useful for smaller s

Alice & Bob can choose different "s" parameters!

Ensure same input used in all circuits?

Compute $f(x,y)\|H_1(x)\|H_2(y)$ for universal hash H_i [shelatShen13]

Adversary cannot violate **correctness**, only privacy

- lacktriangle Privacy violated only by one bit, and only with probability 2^{-s}
- $ightharpoonup \epsilon$ -CovIDA security notion of [MohasselRiva14]
- Compelling generalization of covert security [AumannLindell10]; useful for smaller s

Alice & Bob can choose different "s" parameters!

Ensure same input used in all circuits?

Compute $f(x,y)\|H_1(x)\|H_2(y)$ for universal hash H_i [shelatShen13]

Circuits have common output wire labels?

- Enforced via hash-commitments to output wire labels
- Commit to PSI input before opening circuits for cut-and-choose

comparison with other protocols

[MohasselRiva13]+[Lindell13]: 2^s security from s circuits:

- Receiver extracts the input of a cheating sender, computes f himself
- PSI significantly cheaper than input-recovery bootstrap circuit
- ightharpoonup With probability 2^{-s} , adversary can violate all security properties

[HuanKatzEvans13]: 2^s security from s circuits each direction:

- Similar dual-execution setup, different (slower) reconciliation phase
- lacktriangle With probability 2^{-s} , adversary can learn more than 1 bit.
- Both parties must use same s.

summary

Restricting leakage predicate in dual-execution:

- Restrict to "Only Computation Leaks"-style leakage
- Formalize guarantees given by malicious garbled circuits

Reducing leakage probability in dual-execution:

Cut and choose, reconcile using Private Set Intersection

koniec!

dziękuję!

Richer Efficiency/Security Tradeoffs in 2PC

Vladimir Kolesnikov, Payman Mohassel, Ben Riva & Mike Rosulek eprint.iacr.org/2015/055