Rerandomizable RCCA Encryption

Manoj Prabhakaran & Mike Rosulek

CRYPTO 2007 - August 23, 2007

Thanks to Qualcomm for travel support

Imagine encryption scheme with following feature

▶ Alice sends C = Enc(m) to Bob

Imagine encryption scheme with following feature

- ▶ Alice sends C = Enc(m) to Bob
- \triangleright Carl sees C, generates a "copy" C' which also decrypts to m.

Imagine encryption scheme with following feature

- ▶ Alice sends C = Enc(m) to Bob
- \blacktriangleright Carl sees C, generates a "copy" C' which also decrypts to m.
- ► Eve can't tell whether C' was a "copy" or fresh encryption
- "Unlinkable blind copy"

Imagine encryption scheme with following feature

- ightharpoonup Alice sends $C = \operatorname{Enc}(m)$ to Bob
- ► Carl sees C, generates a "copy" C' which also decrypts to m.
- ► Eve can't tell whether C' was a "copy" or fresh encryption
- "Unlinkable blind copy"

Malleability is now a concern, but...

Imagine encryption scheme with following feature

- ▶ Alice sends C = Enc(m) to Bob
- \blacktriangleright Carl sees C, generates a "copy" C' which also decrypts to m.
- ► Eve can't tell whether C' was a "copy" or fresh encryption
- "Unlinkable blind copy"

Malleability is now a concern, but...

► CCA security rules out copying feature!

Imagine encryption scheme with following feature

- ▶ Alice sends C = Enc(m) to Bob
- \blacktriangleright Carl sees C, generates a "copy" C' which also decrypts to m.
- ightharpoonup Eve can't tell whether C' was a "copy" or fresh encryption
- "Unlinkable blind copy"

Malleability is now a concern, but...

- CCA security rules out copying feature!
- ▶ Ideally, want scheme to be "non-malleable except for copying"

Intro Construction UC Characterization Conclusion

Unlinkable Blind Copying

Imagine encryption scheme with following feature

- ightharpoonup Alice sends $C = \operatorname{Enc}(m)$ to Bob
- ► Carl sees C, generates a "copy" C' which also decrypts to m.
- ► Eve can't tell whether C' was a "copy" or fresh encryption
- "Unlinkable blind copy"

Malleability is now a concern, but...

- CCA security rules out copying feature!
- Ideally, want scheme to be "non-malleable except for copying"

Strong tradeoff between features and non-malleability:

Copying is allowed, in very robust sense

Imagine encryption scheme with following feature

- ightharpoonup Alice sends $C = \operatorname{Enc}(m)$ to Bob
- ► Carl sees C, generates a "copy" C' which also decrypts to m.
- ► Eve can't tell whether C' was a "copy" or fresh encryption
- "Unlinkable blind copy"

Malleability is now a concern, but...

- CCA security rules out copying feature!
- Ideally, want scheme to be "non-malleable except for copying"

Strong tradeoff between features and non-malleability:

- Copying is allowed, in very robust sense
- Everything else is forbidden, in the strongest sense

Formalizing the Problem

Rerandomizability

For any $C \leftarrow \text{Enc}_{PK}(m)$, Rerand(C) has same distribution as $Enc_{PK}(m)$.

Formalizing the Problem

Rerandomizability

For any $C \leftarrow \operatorname{Enc}_{PK}(m)$, Rerand(C) has same distribution as $\operatorname{Enc}_{PK}(m)$.

Replayable-CCA (RCCA) security [Canetti, Krawczyk, Nielsen]

Scheme is CCA secure, except it may be possible to "maul" an encryption of m into another that decrypts to same m.

Intro Construction UC Characterization Conclusion

Formalizing the Problem

Rerandomizability

For any $C \leftarrow \operatorname{Enc}_{PK}(m)$, Rerand(C) has same distribution as $Enc_{PK}(m)$.

Replayable-CCA (RCCA) security [Canetti, Krawczyk, Nielsen]

Scheme is CCA secure, except it may be possible to "maul" an encryption of m into another that decrypts to same m.

Question [Canetti, Krawczyk, Nielsen]

Are there rerandomizable, RCCA-secure encryption schemes?

3 / 21

Related work

Canetti, Krawczyk, Nielsen [CRYPTO'03]

▶ Defined RCCA, posed problem.

Related work

Canetti, Krawczyk, Nielsen [CRYPTO'03]

Defined RCCA, posed problem.

Golle, Jakobsson, Juels, Syverson [RSA'04]

- Applications of rerandomizability for anonymous schemes
- Rerandomizable, CPA-secure scheme

Related work

Canetti, Krawczyk, Nielsen [CRYPTO'03]

Defined RCCA, posed problem.

Golle, Jakobsson, Juels, Syverson [RSA'04]

- Applications of rerandomizability for anonymous schemes
- Rerandomizable, CPA-secure scheme

Gröth [TCC'04] gives two rerandomizable schemes:

- Achieves weaker variant of RCCA security
- Achieves full RCCA in generic group model

Our Results

First rerandomizable RCCA scheme in standard model.

- Security proven under DDH assumption.
- More efficient than Gröth's schemes.

Our Results

First rerandomizable RCCA scheme in standard model.

- Security proven under DDH assumption.
- More efficient than Gröth's schemes.

Natural security characterization in the UC framework.

- Justifies choice of security definitions
- Positive result for sophisticated functionality in standard UC model

Our Results

First rerandomizable RCCA scheme in standard model.

- Security proven under DDH assumption.
- ▶ More efficient than Gröth's schemes.

Natural security characterization in the UC framework.

- Justifies choice of security definitions
- Positive result for sophisticated functionality in standard UC model

Full version (and this talk) has improved construction

http://eprint.iacr.org/2007/119

Key Idea #1

Use two "strands" of Cramer-Shoup encryption

- First strand is usual encryption
- Second strand helps with rerandomization

Recipe

Key Idea #1

Use two "strands" of Cramer-Shoup encryption

- First strand is usual encryption
- Second strand helps with rerandomization

Key Idea #2

"Tie strands together" with correlated randomness

▶ The 2 strands useful only when combined with each other

Recipe

Key Idea #1

Use two "strands" of Cramer-Shoup encryption

- First strand is usual encryption
- Second strand helps with rerandomization

Key Idea #2

"Tie strands together" with correlated randomness

The 2 strands useful only when combined with each other

Key Idea #3

"Twist first strand" (technical)

- ► Make the 2 strands of different type
- ▶ Avoid bad ways of combining the 2 strands together

Key Idea #1

Double-Strand Idea

Use two "strands" of Cramer-Shoup encryption

- First strand is usual encryption
- Second strand helps with rerandomization

Double-Strand Idea

Key Idea #1

Use two "strands" of Cramer-Shoup encryption

- First strand is usual encryption
- Second strand helps with rerandomization

Golle et al. [RSA'04] use a double-strand idea with ElGamal.

In their case, second strand carries public key data needed to rerandomize ElGamal.

Double-Strand Idea

Key Idea #1

Use two "strands" of Cramer-Shoup encryption

- First strand is usual encryption
- ► Second strand helps with rerandomization

Golle et al. [RSA'04] use a double-strand idea with ElGamal.

- In their case, second strand carries public key data needed to rerandomize ElGamal.
- ► In our case, second strand carries message data needed for rerandomize Cramer-Shoup.

Double-strand idea illustrated with ElGamal [Golle et al]:

▶ Normal ElGamal encryption of m (public key is g^a):

$$g^{x}$$
, $m(g^{a})^{x}$ for random x

Double-strand idea illustrated with ElGamal [Golle et al]:

▶ Normal ElGamal encryption of m (public key is g^a):

$$g^{x}$$
, $m(g^{a})^{x}$ for random x

"Double-Strand" ElGamal encryption of m:

$$g^x$$
, mg^{ax} , g^y , g^{ay} for random x, y

Double-strand idea illustrated with ElGamal [Golle et al]:

▶ Normal ElGamal encryption of m (public key is g^a):

$$g^{x}$$
, $m(g^{a})^{x}$ for random x

▶ "Double-Strand" ElGamal encryption of *m*:

$$g^{x}$$
, mg^{ax} , g^{y} , g^{ay} for random x, y

Rerandomize x additively

$$g^{x}(g^{y})^{s}$$
, $mg^{ax}(g^{ay})^{s}$, for rand s
= g^{x+ys} , $mg^{a(x+ys)}$,

Double-strand idea illustrated with ElGamal [Golle et al]:

▶ Normal ElGamal encryption of m (public key is g^a):

$$g^{x}$$
, $m(g^{a})^{x}$ for random x

▶ "Double-Strand" ElGamal encryption of *m*:

$$g^x$$
, mg^{ax} , g^y , g^{ay} for random x, y

Rerandomize x additively, y multiplicatively

$$g^{x}(g^{y})^{s}$$
, $mg^{ax}(g^{ay})^{s}$, $(g^{y})^{t}$, $(g^{ay})^{t}$ for rand s , t

$$= g^{x+ys}$$
, $mg^{a(x+ys)}$, g^{yt} , $g^{a(yt)}$

Double-strand idea illustrated with ElGamal [Golle et al]:

▶ Normal ElGamal encryption of m (public key is g^a):

$$g^{x}$$
, $m(g^{a})^{x}$ for random x

▶ "Double-Strand" ElGamal encryption of *m*:

$$g^x$$
, mg^{ax} , g^y , g^{ay} for random x, y

Rerandomize x additively, y multiplicatively

$$g^{x}(g^{y})^{s}$$
, $mg^{ax}(g^{ay})^{s}$, $(g^{y})^{t}$, $(g^{ay})^{t}$ for rand s , t

$$= g^{x+ys}$$
, $mg^{a(x+ys)}$, g^{yt} , $g^{a(yt)}$

Result is distributed as fresh double-strand encryption

Intro Construction UC Characterization Conclusion

Double-Strands for Cramer-Shoup

We apply double-strand idea to Cramer-Shoup:

▶ Normal Cramer-Shoup: (μ is hash of first 3 components)

$$g_1^x, g_2^x, mB^x, (CD^\mu)^x$$
 for random x

Double-Strands for Cramer-Shoup

We apply double-strand idea to Cramer-Shoup:

▶ Normal Cramer-Shoup: (μ is hash of first 3 components)

$$g_1^x, g_2^x, m B^x, (CD^{\mu})^x$$
 for random x

▶ Double-strand idea applied: (μ is encoding of message)

$$g_1^x, g_2^x, mB^x, (CD^{\mu})^x, g_1^y, g_2^y, B^y, (CD^{\mu})^y$$
 for rand x, y

Double-Strands for Cramer-Shoup

We apply double-strand idea to Cramer-Shoup:

▶ Normal Cramer-Shoup: (μ is hash of first 3 components)

$$g_1^x, g_2^x, m B^x, (CD^{\mu})^x$$
 for random x

▶ Double-strand idea applied: (μ is encoding of message)

$$g_1^x, g_2^x, mB^x, (CD^{\mu})^x, g_1^y, g_2^y, B^y, (CD^{\mu})^y$$
 for rand x, y

Possible Attack!

Can "mix-and-match" strands from 2 independent ciphertexts, if they carry the same message (μ) .

Key Idea #2

"Tie strands together" with shared randomness u; give an additional encryption of u

$$(g_1^x)^u, (g_2^x)^u, mB^x, (CD^\mu)^x, (g_1^y)^u, (g_2^y)^u, B^y, (CD^\mu)^y, Enc(u)$$

Key Idea #2

"Tie strands together" with shared randomness u; give an additional encryption of u

$$(g_1^x)^u, (g_2^x)^u, mB^x, (CD^\mu)^x, (g_1^y)^u, (g_2^y)^u, B^y, (CD^\mu)^y, Enc(u)$$

Thwarts "mix-and-match" attack:

- Strands only combine if they share common u
- Receiver must remove u to decrypt

Key Idea #2

"Tie strands together" with shared randomness u; give an additional encryption of u

$$(g_1^x)^u, (g_2^x)^u, mB^x, (CD^\mu)^x, (g_1^y)^u, (g_2^y)^u, B^y, (CD^\mu)^y, Enc(u)$$

Thwarts "mix-and-match" attack:

- ▶ Strands only combine if they share common *u*
- Receiver must remove u to decrypt

Encryption of u must be:

- ▶ malleable, to allow rerandomization of *u*
- rerandomizable, for randomness within Enc

Key Idea #2

"Tie strands together" with shared randomness u; give an additional encryption of u

$$(g_1^x)^u, (g_2^x)^u, mB^x, (CD^\mu)^x, (g_1^y)^u, (g_2^y)^u, B^y, (CD^\mu)^y, Enc(u)$$

Thwarts "mix-and-match" attack:

- Strands only combine if they share common u
- Receiver must remove u to decrypt

Encryption of *u* must be:

- ▶ malleable, to allow rerandomization of u
- rerandomizable, for randomness within Enc

Double-strand "Cramer-Shoup lite" has these properties.

Twist the First Strand

$$g_1^{xu}, g_2^{xu}, mB^x, (CD^{\mu})^x, g_1^{yu}, g_2^{yu}, B^y, (CD^{\mu})^y, Enc(u)$$

Possible Attack

Can rerandomize first strand multiplicatively, if plaintext is known.

Twist the First Strand

$$g_1^{xu}, g_2^{xu}, mB^x, (CD^{\mu})^x, g_1^{yu}, g_2^{yu}, B^y, (CD^{\mu})^y, Enc(u)$$

Possible Attack

Can rerandomize first strand multiplicatively, if plaintext is known.

Key Idea #3

Make first strand fundamentally different, so it can only be rerandomized in the prescribed way

Twist the First Strand

$$g_1^{xu}, g_2^{xu}, mB^x, (CD^{\mu})^x, g_1^{yu}, g_2^{yu}, B^y, (CD^{\mu})^y, Enc(u)$$

Possible Attack

Can rerandomize first strand multiplicatively, if plaintext is known.

Key Idea #3

Make first strand fundamentally different, so it can only be rerandomized in the prescribed way

Analysis uses linear-algebraic interpretation:

- ► First strand's randomness x is perturbed by fixed vector
- ▶ More components $(g_1, ..., g_4)$ needed for linear independence.

Security of our Scheme

Our scheme satisfies:

- ► RCCA security (Canetti, Krawczyk, Nielsen [CRYPTO'03])
- Perfect rerandomizability
- Several correctness properties

Security of our Scheme

Our scheme satisfies:

- RCCA security (Canetti, Krawczyk, Nielsen [CRYPTO'03])
- Perfect rerandomizability
- Several correctness properties

Proof uses:

- ▶ DDH assumption in 2 groups (for CS and CS-lite)
 - Requires 3 large primes of special form (Cunningham chain)
- ▶ Linear algebra interpretation of our scheme

Some philosophical thoughts:

 Want scheme that is non-malleable except for unlinkable copying feature

Some philosophical thoughts:

- Want scheme that is non-malleable except for unlinkable copying feature
- ► Can also imagine different tradeoff (e.g, non-malleable other than some homomorphic operation)

Some philosophical thoughts:

- Want scheme that is non-malleable except for unlinkable copying feature
- ► Can also imagine different tradeoff (e.g, non-malleable other than some homomorphic operation)
- ▶ What are the "right" security, correctness definitions?

Some philosophical thoughts:

- Want scheme that is non-malleable except for unlinkable copying feature
- ► Can also imagine different tradeoff (e.g., non-malleable other than some homomorphic operation)
- What are the "right" security, correctness definitions?
- Details motivated by natural UC formulation...

Universal Composition (UC)

Universal Composition (UC) framework for security definitions

- Proposed by Canetti [FOCS'01]
- Simulation-based security with arbitrary interactive environment
- "Natural" formulations of security via ideal functionalities

Intro Construction UC Characterization Conclusion

Universal Composition (UC)

Universal Composition (UC) framework for security definitions

- Proposed by Canetti [FOCS'01]
- Simulation-based security with arbitrary interactive environment
- "Natural" formulations of security via ideal functionalities
- No secure protocols for most tasks (unless model is significantly weakened)!

We define a powerful new UC functionality.

- Users send private messages to each other
- Anyone can cause previous message to be re-sent

We define a powerful new UC functionality.

- Users send private messages to each other
- Anyone can cause previous message to be re-sent

Theorem

Any rerandomizable, RCCA-secure scheme (with our correctness properties) is a secure realization of this functionality.

We define a powerful new UC functionality.

- Users send private messages to each other
- Anyone can cause previous message to be re-sent

Theorem

Any rerandomizable, RCCA-secure scheme (with our correctness properties) is a secure realization of this functionality.

- Justifies our security definitions, correctness properties
- Positive UC result in standard model.
- ► Can easily extend to add features

First rerandomizable, RCCA-secure encryption scheme under standard assumption

- ► Can make unlinkable "copies" of ciphertexts
- ► Scheme is otherwise totally non-malleable

First rerandomizable, RCCA-secure encryption scheme under standard assumption

- ► Can make unlinkable "copies" of ciphertexts
- Scheme is otherwise totally non-malleable

Natural characterization in UC framework

- Justifies choice of security definitions
- Sophisticated positive result for standard UC model

Open Problems

Anonymous, rerandomizable RCCA scheme?

- Adversary cannot tell which public key used to generate ciphertext
- Most interesting applications of rerandomizability also require anonymity

Open Problems

Anonymous, rerandomizable RCCA scheme?

- Adversary cannot tell which public key used to generate ciphertext
- Most interesting applications of rerandomizability also require anonymity

Other tradeoffs between features and non-malleability in encryption schemes

- Features can be performed in an unlinkable way
- Scheme is non-malleable otherwise

Thanks for your attention!

fin.

When rerandomizing u value (say, $u \rightsquigarrow ru$):

When rerandomizing u value (say, $u \rightsquigarrow ru$):

▶ Multiplication in exponent of Cramer-Shoup group (e.g, \mathbb{Z}_p^*):

$$g_1^{y_{\mathbf{u}}} \leadsto g_1^{(ty)(r\mathbf{u})}$$

When rerandomizing u value (say, $u \rightsquigarrow ru$):

▶ Multiplication in exponent of Cramer-Shoup group (e.g, \mathbb{Z}_p^*):

$$g_1^{yu} \leadsto g_1^{(ty)(ru)}$$

... and as the malleable operation of CS-lite:

$$Enc(u) \rightsquigarrow Enc(ru)$$

When rerandomizing u value (say, $u \rightsquigarrow ru$):

▶ Multiplication in exponent of Cramer-Shoup group (e.g, \mathbb{Z}_p^*):

$$g_1^{yu} \rightsquigarrow g_1^{(ty)(ru)}$$

... and as the malleable operation of CS-lite:

$$Enc(u) \rightsquigarrow Enc(ru)$$

For 2 operations to coincide, must have:

- ▶ CS-lite group is subgroup of \mathbb{Z}_p^* .
- ▶ DDH in both groups (that of CS and CS-lite)

Is it an unreasonable relationship between 2 groups?

Cunningham Chains

Definition

A Cunningham chain is 3 primes of the form q, 2q + 1, 4q + 3.

Cunningham Chains

Definition

A Cunningham chain is 3 primes of the form q, 2q + 1, 4q + 3.

- $lackbox{}\mathbb{Q}\mathbb{R}^*_{4q+3}$ and $\mathbb{Q}\mathbb{R}^*_{2q+1}$ have desired relationship
- ▶ DDH believed to hold (4q + 3 and 2q + 1 are safe primes).
- ▶ Cunningham chains known to exist for $q \sim 2^{20,000}$.

What is adversary's advantage in RCCA experiment?

normal encryption ? normal decryption ?

Define an "alternate encryption."



Lemma

Alternate encryption indistinguishable from normal encryption (DDH assumption).

 $\begin{array}{c|cccc} normal & & alternate \\ encryption & & \approx \\ \\ normal & & normal \\ decryption & & decryption \\ \end{array}$

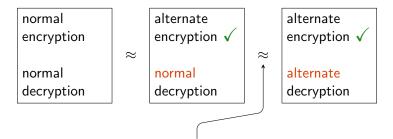
Lemma

Alternate encryption independent of choice of plaintext.

Decryption answers might leak information about private key!

normal alternate encryption \approx normal decryption decryption \uparrow

Define a (computationally unbounded) "alternate decryption."



Lemma

Alternate decryption indistinguishable from normal decryption (linear algebra analysis).

Lemma

Alternate decryption computed using only public key and challenge ciphertext.

Adversary's entire view independent of choice of plaintext!

